Cannabis, the evidence

MCID minimally clinically important difference VAS 1.5-2/10 or 30% reduction

Randomised control trials

Randomised Control Trials

- Often comparing two groups
- Placebo
- Randomised to reduce bias from chance

www.elsevier.com/locate/pain

Sativex successfully treats neuropathic pain characterised by allodynia: A randomised, double-blind, placebo-controlled clinical trial

Turo J. Nurmikko ^{a,*}, Mick G. Serpell ^b, Barbara Hoggart ^c, Peter J. Toomey ^d, Bart J. Morlion ^e, Derek Haines ^f

Pain 133 (2007) 210-220

www.elsevier.com/locate/pain

Sativex successfully treats neuropathic pain characterised by allodynia: A randomised, double-blind, placebo-controlled clinical trial

Turo J. Nurmikko ^{a,*}, Mick G. Serpell ^b, Barbara Hoggart ^c, Peter J. Toomey ^d, Bart J. Morlion ^e, Derek Haines ^f

Table 2 Patient characteristics

	Sativex $(N = 63)$	Placebo $(N = 62)$
Age, yr mean (SD)	52.4 (15.8)	54.3 (15.2)
Women, N (%)	35 (55.6)	39 (62.9)
White, N (%)	61 (97)	60 (97)
Weight, kg mean (SD)		
Men	79.9 (16.7)	86.8 (16.7)
Women	72.0 (18.2)	72.7 (17.3)
Duration of pain, yr mean (SD)	6.4 (5.7)	6.2 (6.4)

www.elsevier.com/locate/pain

Sativex successfully treats neuropathic pain characterised by allodynia: A randomised, double-blind, placebo-controlled clinical trial

Turo J. Nurmikko ^{a,*}, Mick G. Serpell ^b, Barbara Hoggart ^c, Peter J. Toomey ^d, Bart J. Morlion ^e, Derek Haines ^f

N = 125 6.3 years duration of pain Sativex -1.48 Placebo -0.52

Randomised control trial pitfalls

- Legislation
- Homogeneity of diagnosis
 - E.g. different pain diagnoses

- Numbers neuropathic pain
- Industry sponsorship-vested interest
- Systematic reviews

A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis

```
R. M. Langford · J. Mares · A. Novotna · M. Vachova · I. Novakova · W. Notcutt · S. Ratcliffe
```

- MS with Central pain
- How do you diagnose? No gold standard or test to diagnose.
- Leads to variable sample

- 30% reduction in pain
- THC/CBD 50%
- Placebo spray 45%
- THC/CBD 1.93/10 Placebo 1.76/10

Neuropathic pain

- Changes in
 - sensory nerves,
 - spinal cord
 - brain
- Stimulus independent pain
- Hypersensitivity (allodynia)

Neuropathic pain

- post-herpetic neuralgia
- peripheral neuropathy
- focal nerve lesion
- radiculopathy
- Complex Regional Pain Syndrome (CRPS) type 2

Smoked Medicinal Cannabis for Neuropathic Pain in HIV: A Randomized, Crossover Clinical Trial

Ronald J Ellis*,1, Will Toperoff¹, Florin Vaida², Geoffrey van den Brande³, James Gonzales⁴, Ben Gouaux⁵, Heather Bentley⁵, and J Hampton Atkinson⁵

Pain score 11.1/20

Cannabis Reduction 4.1/20 37%

Placebo Reduction 0.96/20 8.6%

Cannabis 46% achieved 30% reduction pain Placebo 18% achieved 30% reduction in pain

N = 28 - 64% took opioids, 36% NSAIDS, 29% TCAs, 64% anticonvulsants Neuropathic pain in HIV

RESEARCH

Smoked cannabis for chronic neuropathic pain: a randomized controlled trial

Mark A. Ware MBBS, Tongtong Wang PhD, Stan Shapiro PhD, Ann Robinson RN, Thierry Ducruet MSc, Thao Huynh MD, Ann Gamsa PhD, Gary J. Bennett PhD, Jean-Paul Collet MD PhD

Average daily pain at baseline				
Mean (SD)	6.89 (1.37)			
Range	4.0–9.2			

Table 3: Effects of smoked cannabis and secondary outcomes, by potency of tetrahydrocannabinol (THC) received					
	Poter	Potency of THC, %; outcome measure, mean (SD)*			
Outcome	0	2.5	6.0	9.4	
Pain intensity					
Average daily pain	6.1 (1.6)	5.9 (1.9)	6.0 (1.8)	5.4 (1.7)†	

Post traumatic and post surgical neuropathic pain N= 23 cross over trial 22% reduction pain intensity 1.49/10

Original Article

A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment

M. Serpell ⋈, S. Ratcliffe, J. Hovorka, M. Schofield, L. Taylor, H. Lauder, E. Ehler

First published: 13 January 2014 | https://doi.org/10.1002/j.1532-2149.2013.00445.x | Cited by: 30

- N = 303
- Neuropathic pain with allodynia 6 years
- THC/CBD Spray in addition to usual analgesia

30% reduction pain 28% vs 16%

Analysis

• 35/128 35/79 responders

2017 review

Cochrane Database of Systematic Reviews

Cannabis-based medicines for chronic neuropathic pain in adults (Review)

Mücke M, Phillips T, Radbruch L, Petzke F, Häuser W

Cochrane review Neuropathic pain

• THC/CBD oromucosal spray (nine studies with 1433 participants) was superior to placebo. SMD was -0.40 (95% CI -0.75 to -0.05) (P value 0.03).

30% reduction pain

- 10 studies with 1586 participants.
- 323 of 819 (39.4%) CBD/THC
- 251 of 767 (32.7%) placebo group
- (RD 0.09, 95% CI 0.03 to 0.15; P value 0.004; I² = 34%). NNTB was 11 (7 to 33).

Cancer pain

- Mass effects
 - Tissue compression bones, muscles, organs
 - Neuropathic
- Complications of treatment
 - Radiotherapy
 - Chemotherapy

Original Article

Multicenter, Double-Blind, Randomized, Placebo-Controlled, Parallel-Group Study of the Efficacy, Safety, and Tolerability of THC:CBD Extract and THC Extract in Patients with Intractable Cancer-Related Pain

- 2.7THC & 2.5 CBD (Sativex)
- Incurable malignancy using strong opiods
- 2 week trial
- NPRS>4/10

Response Rate

Fig. 3. Pain 0–10 Numerical Rating Scale scores: responder analysis (ITT analysis). ^aOdds ratio (95% CI) THC:CBD vs. placebo; ^bFisher's exact test.

NPRS (Pain score)

Table 3

Primary and Secondary Endpoints Showing Baseline Score, Change from Baseline, Treatment Difference, and Statistical Significance of the Difference in Change From Baseline for THC:CBD, THC, and Placebo

				Comparisor	Comparison with Placebo	
Endpoint	Treatment Group	Baseline	Change From Baseline	Treatment Difference	Statistical Significance, <i>P</i> -value	
Mean pain severity NRS score (coprimary)	THC:CBD THC Placebo	5.68 5.77 6.05	-1.37 -1.01 -0.67	$-0.67^{a} \\ -0.32^{a} \\ -$	0.014 0.245 —	

Side Effects (60%)

- Somnolence
- Nausea
- Dizziness

Table 4
Most Common Treatment-Related Adverse
Events (Reported by Three or More Patients)

Description of Event	THC:CBD	THC extract n (%)	Placebo n (%)
Somnolence	8 (13)	8 (14)	6 (10)
Dizziness	7 (12)	7 (12)	3 (5)
Confusion	4 (7)	1(2)	1(2)
Nausea	6 (10)	4(7)	4(7)
Vomiting	3 (5)	4(7)	2(3)
Raised gamma GT	2(3)	5 (9)	1(2)
Hypercalcemia	0	0	3 (5)
Hypotension	3 (5)	0	0

Gamma GT = gamma glutamyl transferase.

Original Article

An Open-Label Extension Study to Investigate the Long-Term Safety and Tolerability of THC/CBD Oromucosal Spray and Oromucosal THC Spray in Patients With Terminal Cancer-Related Pain Refractory to Strong Opioid Analgesics

- Followed 43 patients from previous trial
- 22 centres 21 UK, 1 Belgium
- 37 THC/CBD 2 THC
- Monthly visits
- Median 25 days with maximum 579 days

Results

Side effects

- Dizziness, nausea, vomiting, dry mouth,
 Somnolence, confusion
- 59% withdrew

RESEARCH

EDUCATION

TREATMENT

ADVOCACY

The Journal of Pain, Vol 13, No 5 (May), 2012

Available online at www.jpain.org and www.scienc

Nabiximols for Opioid-Treated Cancer Patients With Poorly-Controlled Chronic Pain: A Randomized, Placebo-Controlled, Graded-Dose Trial

Figure 3. Continuous responder analysis.

Figure 4. Analysis of change from baseline in NRS average pain score.

Opioids versus antidepressants in postherpetic neuralgia

A randomized, placebo-controlled trial

S.N. Raja, MD; J.A. Haythornthwaite, PhD; M. Pappagallo, MD; M.R. Clark, MD; T.G. Travison, PhD; S. Sabeen, MD; R.M. Royall, PhD; and M.B. Max, MD

Table 2 Unadjusted (observed) primary and secondary outcome measures

	Pl	acebo	Opioid		TCA	
Parameter	Baseline	Maintenance	Baseline	Maintenance	Baseline	Maintenance
Pain intensity, 0 to 10	6.2 (2.0)	6.0 (2.0)	6.5 (1.9)	4.4 (2.4)	6.3 (2.4)	5.1 (2.3)
Pain relief, 0 to 100%	_	11.2 (19.8)	_	38.2 (32.2)	_	31.9 (30.4)

N = 76 randomised

N = 44 completers

19 dropped out in opioid group

Concise Report

Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis

D. R. Blake, P. Robson¹, M. Ho², R. W. Jubb³ and C. S. McCabe

N= 58 No dropouts in CBM group CBM 2.2/7 = 31%

Table 2. Efficacy endpoints: difference between change from baseline between CBM and placebo after 5 weeks of tr

	Baseline (mean/median) ^a		Endpoint (mean/median) ^a		
Efficacy endpoint	CBM	Placebo	СВМ	Placebo	Difference (mean/median ^a)
Morning pain on movement ^a Morning pain at rest ^a	7.0 5.3	6.7 5.3	4.8 3.1	5.3 4.1	-0.95 -1.04

Celecoxib versus diclofenac in long-term management of rheumatoid arthritis: randomised double-blind comparison

Paul Emery, Henning Zeidler, Tore K Kvien, Mario Guslandi, Raphael Naudin, Helen Stead, Kenneth M Verburg, Peter C Isakson, Richard C Hubbard, G Steven Geis

'		Celecoxib Baseline Week 24		Diclofenac		
				Baseline	Week 24	
	Pain VAS (mm)	47.4 (21.5)	40.8 (25.5)	51.7 (21.6)	43.1 (25.2)	

N = 655 RA for over six months Celecoxib 6.6/27.4 = 14% Diclofenac 8.6/51.7 = 17%

Take home points

Cannabis is another tool in the toolbox of analgesics It is as effective as other analgesics in RCTs for chronic pain including cancer pain

Cost is a significant barrier

MCID minimally clinically important difference VAS 1.5-2/10 or 30% reduction

People are different and respond to different medications/ varying side effects due to genetic makeup/socio-cultural differences.